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The Aharonov-Casher �AC� oscillations of spin current through a two-dimensional ballistic ring in the
presence of Rashba spin-orbit interaction and external magnetic field has been calculated using the semiclas-
sical path-integral method. For classically chaotic trajectories the Fokker-Planck equation determining dynam-
ics of the particle spin polarization has been derived. On the basis of this equation an analytic expression for
the spin conductance has been obtained taking into account a finite width of the ring arms carrying large
number of conducting channels. It was shown that the finite width results in a broadening and damping of
spin-current AC oscillations. We found that an external magnetic field leads to appearance of new nondiagonal
components of the spin conductance, allowing thus by applying a rather weak magnetic field to change a
direction of the transmitted spin-current polarization.
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I. INTRODUCTION

The Aharonov-Casher effect is a spectacular demonstra-
tion of the fundamental role of the spin-orbit interaction
�SOI� in electronic transport. This effect is a non-Abelian
analog of the Aharonov-Bohm �AB� effect. An electronic
wave entering a two-dimensional �2D� ring is splitted into
two waves traveling trough the upper and the lower arms and
interfering on the exit from the ring. Due to SOI the spinor
components in each of the waves obtain the relative phase
shift. This shift, in its turn, gives rise to a destructive or
constructive interference pattern in the transmittance prob-
ability, that results in a number of oscillation effects on
electron-transport parameters. Notably, that in semiconductor
heterostructures SOI can be varied through the gate-voltage
manipulation, suggesting interesting opportunities for practi-
cal applications of this effect in spintronics.

A simplest model to study the AC effect is a one-
dimensional �1D� or one-channel ring with none or few scat-
terers of electrons. Aronov and Lyanda-Geller1 studied oscil-
lations of the magnetoconductance in a 1D ring in the
presence of Rashba2 SOI. Yi et al.3 considered a joint effect
of the Zeeman coupling, magnetic flux, and SOI on the con-
ductance of a 1D ring beyond the adiabatic approximation
employed in Ref. 1. Nitta et al.4 noted that SOI alone, with-
out the magnetic field, can cause oscillations of the ring elec-
tric conductance. Meijer et al.5 pointed out that the Hamil-
tonian used earlier in Ref. 1 was not quite correct and, in
particular, was not Hermitian. Using the correct Hamiltonian
Frustaglia and Richter6 revised the expression for the con-
ductance found in Ref. 4.

In disordered mesoscopic systems the AC effect is
strongly modified. Multiple impurity scatterings lead to av-
eraging out of some strong oscillations that were presented in
ideal 1D rings. There is a similarity to AB effect where the
fundamental h /e peak in the Fourier spectrum of magneto-
conductance vanishes and is substituted for h /2e Al’tshuler
et al.7 �AAS� oscillations. Mathur and Stone8 have demon-
strated that a similar weak-localization effect takes place in
the case of AC oscillations in a thin diffusive ring with
Rashba SOI. They have shown that the average conductance

periodically varies as a function of the SOI coupling constant
with a period that is 1/2 of the ideal ring conductance oscil-
lations. This prediction have been confirmed experimentally
by Koga et al.9 who observed that the amplitude of h /2e
magnetoconductance oscillations �AAS-type oscillations� os-
cillates itself with varying the applied gate voltage and, cor-
respondingly, the SOI strength. On the other hand, the fun-
damental AB as well as AC oscillations show up in
mesoscopic conductance fluctuations. The conductance cor-
relator has been calculated in Ref. 10 for a diffusive ring in
the presence of Zeeman coupling and Rashba SOI. It was
found that the amplitude of h /e AB peak shows oscillations
with varying SOI, similar to those that have been observed
for the h /2e peak in Ref. 9.

Although 1D, as well as diffusive models are useful to
elucidate fundamental physical effects associated with SOI,
they cannot be fully applied to realistic semiconductor sys-
tems used in experiments. For example, an attempt to inter-
pret the observed11 splitting of the AB power spectrum
within the diffusion model10,12 was not successful. In Ref.
11, as well as in other experimental works,9,13 the mesos-
copic loops carry many channels. At the same time their
sizes are comparable to the electron mean free path. There-
fore, neither of the above theoretical models can be applied.
In this situation an approach based on path integrals along
classic trajectories can be fruitful. Such a method has been
applied to transport in mesoscopic systems in a number of
works.14–17 It was also employed for calculation of the spin
conductance through a classically chaotic and regular cavi-
ties and rings with Rashba SOI.18,19 In Ref. 18 it was done
analytically by applying the method of trajectory averaging
while numerical simulations of path integrals were per-
formed in Ref. 19. In both cases pronounced AC oscillations
of the spin conductance with varying SOI constant had been
found. Their important distinction from oscillations of the
electric conductance is that they appear in the main semiclas-
sical approximation, not involving weak localization or other
quantum corrections.

While in a multichannel loop studied in Ref. 18 the elec-
tron motion was two dimensional, the AC phase accumula-
tion had an effectively one-dimensional character. The rea-
son is that in a thin enough loop SOI causes only a small
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variation in spinor amplitudes during particle motion along
any straight segment of a trajectory. In the leading approxi-
mation ignoring AC phase fluctuations associated with a fi-
niteness of a loop width, a phase evolution depends only on
a coordinate along the loop and finite-width effects vanish.
On the other hand, as follows from the Monte Carlo
analysis,19 when a particle lifetime within the ring is long
enough, the finite-width effect on the amplitude and shape of
AC oscillations is strong.

In order to elucidate this problem we will calculate the
spin conductance taking into account the finite-width effect
in a classically chaotic multichannel ring with the Rashba
spin-orbit interaction and a uniform magnetic field applied
perpendicular to the ring. A chaotic motion of particles can
be provided by nonideal boundaries of the ring, as well as by
random potential variations inside it. Starting from an analog
of the Landauer formula derived for the spin conductance in
Appendix A, we apply the path-integral method to this con-
ductance. Within this approximation spin-dependent trans-
mission amplitudes for each of the classical paths decompose
into a product of a spin-independent transmission amplitude
and a matrix determining evolution of spinor components
along this trajectory. The expression for the spin conductance
that is quadratic in these amplitudes should be double
summed over the trajectories afterwards. Ignoring weak lo-
calization and other quantum corrections, only the terms di-
agonal with respect to the trajectories are then retained. As a
result, the spin conductance takes a form of a 3�3 matrix
averaged over the trajectories. Based on known statistical
properties of chaotic trajectories we will derive Fokker-
Planck equations describing spin evolution of a particle mov-
ing through the ring and analytically calculate the average of
spin-conductance matrix components. The finite-width ef-
fects will be analyzed that show up in an additional broad-
ening and decreasing of AC oscillations. The magnetic field,
in its turn, results in appearance of spin-conductance compo-
nents that were equal to zero in the absence of the field,
suggesting thus an opportunity to rotate the spin polarization
on the exit from the ring.

The outline of the paper is as follows. Section II contains
a description of the model system we used in our theory. In
Sec. III an expression for the spin conductance is obtained in
the form of a sum over classical trajectories. In Sec. IV the
Fokker-Planck equation for the spin-polarization distribution
function is derived. On the basis of this equation the spin
conductance averaged over chaotic trajectories is calculated.
The discussion of results is presented in Sec. V.

II. MODEL

We consider spin transport through a 2D ring which is
connected via two symmetrically placed leads to two reser-
voirs of electrons �see Fig. 1� and is subject to the magnetic
field perpendicular to the ring plane. The latter gives rise to
the Zeeman interaction

�ĤZ =
��H

2
�̂z, �H =

g

2

�e�H
m�c

, �1�

where e is the electron charge, H is the magnetic field, g is
the g factor, m� is the effective electron mass, and c is the
light velocity.

The Rashba spin-orbit interaction is assumed to take place
only in the range of the ring. It has the form

�ĤR = �SO�̂ · �p̂ � z� . �2�

Here �SO is the SOI constant, the vector �̂ consists of the
Pauli matrices �̂x, �̂y, and �̂z, p̂ is the momentum operator,
and z is a unit vector parallel to the Z axis. We assume the
hard-wall reflection of electrons from the ring boundaries.
Since the particle spin is conserved upon such a reflection,
Eqs. �1� and �2� determine a spin dynamics in the ring.

The reservoirs are assumed to be in a local thermody-
namic equilibrium with a given polarization �magnetization�.
For simplicity we assume that the left reservoir is polarized
�along a unit vector �� while the right one is unpolarized.
The polarization of the left reservoir is characterized by the
chemical potentials 	L↑=	L+ �	

2 and 	L↓=	L− �	
2 , for

spin-up and spin-down �relative to �� electrons, respectively.
For the right reservoir we assume, in its turn, that 	R↑
=	R↓=	L. This situation is of particular interest for our fur-
ther analysis because establishing of thermodynamic equilib-
rium between spin subsystems in the reservoirs will be ac-
companied by the spin current while the electric current will
be absent. In the linear response regime the spin current in
the right lead can be expressed �see Appendix A� as

Jj = �
i

gji
i�	 , �3�

where i and j take the values x, y, and z and 
 j is the jth
component of �.

III. SEMICLASSICAL APPROXIMATION

We assume that the leads connecting the ring with reser-
voirs are ideal conductors with a constant cross section. This
suggests the use of the Landauer approach for calculation of
the spin current. The latter, however, has an important dis-
tinction from the electric current because it does not con-
serve in the region with SO interaction. Let us assume, for
example, that such a region is ideally transparent. Even in
this case the transmitted spin current will not be equal to the
incident one. Alternatively, we may consider a polarized res-
ervoir connected via one lead to a region with SO interac-
tion. In the stationary case the electric current through this
lead will be zero. At the same time, the spin current will be

Unpolarized
reservoir

Polarized
reservoir

Y

X
W

d

H

Classical trajectory

a

FIG. 1. Geometry of the problem under consideration. The Z
axis points to the reader. W is the leads width, d is the ring arms
width, and a is the radius of the ring.
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finite because spin polarizations of incident and reflected
electrons can be different. This sort of spin transport has
been considered in Ref. 18 where a ring played the role of
the region with SO interaction.

So, we see that Landauer formula should be modified to
take into account effects of nonconcerving spin. In general
case it is done in Appendix A. For a particular setup consid-
ered in this work the expression for the spin conductance
takes a simple form, somewhat similar to the Landauer for-
mula

gji =
1

4��
�
pp�

Tr�t̂p�p
+ �	R��̂ jt̂p�p�	R��̂i� . �4�

Here t̂p�p�	R� is the 2�2 matrix composed of the trans-
mission amplitudes tp�p

↑↑ �	R�, tp�p
↑↓ �	R�, tp�p

↓↑ �	R�, and tp�p
↓↓ �	R�

from the channel p of the left lead to the channel p� of the
right lead. The summation is performed over open channels.
Note, that this formula implies that for calculation of all
spin-conductance components it is not sufficient to calculate

the spin-resolved transmission coefficients T���	�p�p�tp�p
����2

�studied, for example, in Refs. 6 and 20�. This is readily
seen, for example, by inspecting the expression

gxz =
1

4��
�
pp�

��tp�p
↓↑ ��tp�p

↑↑ − �tp�p
↑↓ ��tp�p

↓↓ � ,

which follows from Eq. �4�.
To find the transmission amplitudes in Eq. �4� we will

follow Ref. 21 �see also Ref. 22� for the spinless transmis-
sion amplitude at the Fermi energy EF. In the presence of
spin degrees of freedom it allows the evident generalization

tp�p
��� = − i�
vp�vp� dydy�up�

� �y��up�y�G�y���,y��EF� .

�5�

vp� �vp� is the longitudinal velocity in the p�th �pth� channel
of the right �left� lead. G is the retarded Green’s function.
The integration is performed over cross sections of the leads.
We assume that the leads and ring arms are wide enough so
that there are many channels below the Fermi energy. This
allows to apply the semiclassical approximation �see, e.g.,
Ref. 14� to Eq. �5�. Within this approximation the path-
integral expression for the Green’s function is replaced by
the sum of amplitudes corresponding to classical trajectories
traversing the ring �details of this procedure may be found in
Ref. 17�. Integration over y and y� is performed by the sta-
tionary phase method �large parameter in the exponent is the
number of open channels in the leads�. The result is

tp�p
��� = �

s

t0�s�Ss
���. �6�

The label s enumerates the trajectories that enter the ring at
the angle �= 
sin−1�p� /kFW� relative to the x axis and exit
it at ��= 
sin−1�p�� /kFW�, where W and kF are the leads
width and Fermi wave number, respectively. t0�s� is the spin-
independent transmission amplitude corresponding to the sth
classical trajectory,

t0�s� = −
 i

2Nm
sgn��s�sgn��s��
Ãs

�exp�ikFLs + ikF�sin �sys − sin �s�ys��

+
ie

�c



s

Adr − i	̃s
�

2� . �7�

Here Nm	 int�kFW /�� is the number of open channels, Ls is
the length of the sth trajectory, ys �ys�� stands for the y coor-
dinate of the entrance �exit� point of sth trajectory, and A is
the vector potential corresponding to the magnetic field ap-
plied to the ring. Other quantities in Eq. �7� are

Ãs =
1

a cos �s�
� �y��,���

���
� ,

	̃s = 	s + �� ���y,y��
�y

� + ��−
�����,y��

�y�
� ,

where 	s is the Maslov index14,17 and � is the Heaviside step

function. The matrix Ss
��� in Eq. �6� determines an evolution

of the spin state along sth trajectory. It should be noted that
Eq. �6� has been derived assuming that classical trajectories
do not depend on the spin dynamics. This allowed to write
the terms entering into the sum in Eq. �6� in the form of a
product of spin-dependent and spin-independent parts. In
fact, this assumption means that in the leading semiclassical
approximation we ignore a difference between Fermi veloci-
ties corresponding to spin-split subbands. It can be done, if
during the time between two consecutive collisions with ring
boundaries, a divergence of two wave packets belonging to
these subbands will be much less than the electron wave-
length. The corresponding condition can be written as LSO
=� /�SOm��d, where LSO is the spin-orbit length that mea-
sures the SOI strength and d is the ring width.

For a spin-dependent Hamiltonian consisting of the two
terms represented by Eqs. �1� and �2�, the evolution operator
can be expressed as

Ŝs = T�exp�−
i

�
� dt��SOpF�̂ · nt +

��H

2
�̂z��� . �8�

Here T is the time ordering symbol, pF is the Fermi momen-
tum, nt is the unit vector parallel to p�z, and p ��p�= pF� is
the electron momentum. Note, that direction nt of the effec-
tive magnetic field generated by the SO interaction changes
its sign when a particle reverses its motion direction.

Substituting Eq. �6� into Eq. �4� we obtain

gji =
1

4��
�
p�,p

�
s,u

t0
��s�t0�u�Tr��̂iŜs

+�̂ jŜu� . �9�

In this equation each semiclassical amplitude t0�s� contains a
phase factor exp�2�iLs /��. Since the path lengths Ls and Lu
of trajectories in Eq. �9� are much longer than the electron
wavelength �, the terms with s�u oscillate rapidly even
with a small variation in the particle energy, as well as slight
change in the loop shape and/or impurity positions. In an
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experimental situation it can also be gate voltage variations
and magnetic field switching.11 On the other hand, the diag-
onal terms with s=u do not oscillate. If one is not interested
in mesoscopic fluctuations of the spin conductance, or quan-
tum corrections to it, only the terms with s=u have to be
retained.16 On the basis of the ergodic hypothesis of Ref. 23
this procedure may also be treated as averaging over a ran-
dom ensemble of the rings.

Thus, from Eq. �9� the averaged spin conductance �gij� is
obtained as

�gij� =
1

2��
�

s

�t0�s��2Kij
s , �10�

where

Kij
s =

1

2
Tr��̂iŜs�̂ jŜs

†� . �11�

The electrical conductance G after such averaging takes the
form

�G� = �e/����
s

�t0�s��2, �12�

where the factor 2 accounts for the spin degrees of freedom.
It should be noted that �G� given by Eq. �12� does not de-
pend on the SO interaction strength. On the other hand, os-
cillations of G with the varying Rashba constant have been
predicted in Ref. 1. This distinction can be explained by
importance of quantum effects in an ideal 1D ring considered
in Ref. 1 while such effects are small in a disordered multi-
channel system that we study here. They can be taken into
account as weak localization corrections to AC oscillations
similar to those studied for diffusive rings.8

Let us now consider the transparency

N = �
p�,p

�tp�p�2

for a spinless particle. Here tp�p is the transmission amplitude
from the channel p on the left to the channel p� on the right.
So, the transparency N is normalized to the number of open
channels Nm. Applying configurational averaging to the
above expression we obtain it as a sum over trajectories

�N� = Ncl 	 �
s

�t0�s��2. �13�

Hence, the ratio

P�s� =
�t0�s��2

Ncl

can be identified with the probability that an electron chooses
the sth trajectory to pass the ring. Expressing �t0�s��2 from the
last formula and substituting it into Eq. �10� we obtain

�gij� = g0�Kij
s �s, �14�

where � · �s denotes averaging over trajectories with the prob-
ability P�s� and 2e2g0=e2Ncl /�� is a classical conductance
of the ring.22

We assume that the classical motion of an electron inside
the ring is chaotic. The chaotic dynamics is provided by
small-scale bumps and other irregularities on the ring bound-
aries while macroscopically the ring preserves its regular
shape. For chaotic trajectories after long enough time an
electron “forgets” through which of the leads it entered the
ring. Together with an assumption that the leads are symmet-
ric this allows to conclude that probability for a particle to be
reflected is equal to the probability to be transmitted. So,
Ncl=Nm /2 and g0=Nm /4��.

Formula �14� will be used for calculation of the spin con-
ductance �gij�. However, another physically more transparent
representation of �gij� can be suggested. As shown in Appen-
dix B, Kij

s is the ith component of the electron polarization at
the end of the sth trajectory, provided that at its beginning
the electron was polarized along the jth axis. Taking this into
account one can introduce the effective polarization vector
Pef f�s �e j�	�g�s� /g0��Kxj

s ,Kyj
s ,Kzj

s � of electrons at the end of
the sth trajectory. Here g�s�= �t0�s��2 /2�� is the flux of spin-
less particles that pass the ring through the sth trajectory.
Equation �10� then takes the form

�gij� = g0�
s

Pef f
i �s�e j� . �15�

From comparison of Eqs. �14� and �15� we see that �Kij
s �s

may be treated as ith component of the effective polarization
vector Pef f�e j� on the exit from the ring,

�Kij
s �s = Pef f

i �e j� 	 �
s

Pef f
i �s�e j� . �16�

Equation �15� means that the spin current on the exit from
the ring is given by the sum of effective polarizations corre-
sponding to each classical trajectory, times the flux of par-
ticles passing the ring. From this fact an immediate conclu-
sion follows: if the resonance condition is satisfied, that is
the effective polarizations corresponding to different trajec-
tories on the exit from the ring are codirectional, then the
spin current will have a maximum.

IV. FOKKER-PLANCK EQUATION

According to Eq. �14� calculation of the spin conductance
�gij� reduces to averaging of the polarization transformation
matrix Kij

s over trajectories. To perform this averaging the
distribution function of Kij

s is needed. One of the standard
ways to find it is the following. We note that the quantities
Kij

s in Eq. �11� correspond to the end of the sth trajectory. It
is evident, however, that one may extend definition in Eq.
�11� to any time instant t on the trajectory. Taking then a time
derivative of Eq. �11� we arrive at the stochastic differential
equation �of the Langevin type� for Kij

s . This equation may be
used to calculate drift and diffusion coefficients in the
Fokker-Planck equation. Solving then this Fokker-Planck
equation one can find the desired distribution function.

A. Dynamical equation for the spin S matrix along a trajectory

As a preparation step to our calculation we note that at

H=0 Eq. �8� for Ŝs can be written in the form of a contour
integral over the sth trajectory
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Ŝs�H = 0� = T�exp�−
i

LSO



s

dl · �z � �̂��� . �17�

As any unitary operator acting in the spin space, Ss�H=0�
can also be written in the form of the rotation operator

Ŝs�H = 0� = exp�i
�̂N�

2
� , �18�

where �̂N is a projection of �̂ onto some unit vector N. An
important consequence of Eq. �17� is that N and � depend
only on the geometry of the sth trajectory and do not depend
on the dynamics of motion along the trajectory. This is the
reason why � may be called a geometric phase.18

To extend the analysis of Ref. 18 and take into account
finiteness of the ring width we divide the time interval �0, t�
into small subintervals �ti= ti− ti−1; t0=0� t1� ¯ � tn= t.

After that Ŝ can be represented in the form �the index s is
omitted when it does not lead to any confusion�

Ŝ�t� = Ŝ��tn�Ŝ��tn−1� . . . Ŝ��t1� . �19�

The real trajectory is transformed next by adding to each ith
segment a path passed in direct and opposite directions, as
shown in Fig. 2. It is seen from Eq. �17� that paths passed

twice in the opposite directions do not contribute to Ŝs�H
=0�. Consequently, each term Ŝ��ti� in Eq. �19� may be re-

placed without changing Ŝs with

Ŝabc 	 Ŝc�H = 0�ŜbŜa�H = 0� . �20�

Here b is the trajectory segment corresponding to the time
interval �ti, a and c connect the middle line of the ring with
b, as explained in Fig. 2. Expanding exponents in Eqs. �8�
and �17� one obtains

Ŝabc = 1 −
i

LSO
�̂rdl − i

�H

2
�̂z�ti + 2

i

LSO
2 �̂z�abc,−d, �21�

where dl= �d� for counterclockwise rotation of the electron
and dl=−�d� otherwise. �̂r is the projection of �̂ on the radius
vector. �abc,−d is the oriented area of the trapezium formed
by the vectors a, b, c, and −d. It is positive if the contour

abc, −d is positively oriented and negative otherwise. The
last term in Eq. �21� takes into account the finite width of the
ring. It leads to a phase proportional to the area embraced by
the trajectory, analogously to the finite-width effect on the
Aharonov-Bom phase.24

Formulas �19� and �21� yield the following dynamical
equation for the spin-evolution operator:

� Ŝ

�t
= �i��̇�ei��̂− + e−i��̂+� − i��̂z�Ŝ . �22�

Here

� = a/LSO, �23�

�̂
 =
�̂x 
 i�̂y

2
,

� 	 ��t� =
�H

2
− 2�2h�t�

a
�̇ , �24�

a is the ring radius �distance from the center to the middle
line of the ring� and �̇ is the time derivative of the polar
angle � counted from the negative direction of the OX axis.
The deviation h�t� of the electron trajectory from the middle
line �see Fig. 2� is taken positive for points outside the circle
formed by this line and negative otherwise.

Dynamical Eq. �22� simplifies if we change the system of
coordinates. First we perform transformation to the system

OXYZ˜ rotating together with the electron �OZ˜ axis coincides

with the OZ axis, OX˜ and OY˜ axes rotate with the angular
velocity �̇ around OZ axis�. In this system the evolution
operator takes the form

S̃ = R̂z�t�ŜR̂z
−1�0� , �25�

R̂z�t� = exp�i�̂z��t�/2� . �26�

Using Eqs. �22� and �25� and taking into account that

R̂z
−1�0�=1 one can verify that S̃ satisfies the equation

dS̃

dt
= �− i

�̂��0

2
− i��̂z�S̃ , �27�

where �̂� is a projection of �̂ onto the vector

� = �2�/�,0,1/�� , �28�

� = 
1 + 4�2, �29�

and

�0 = − ��̇ . �30�

Next, we rotate OXYZ˜ around OY˜ axis, until OZ˜ comes

parallel to �. The new coordinate system denoted as OX�YZ�˜

will be called below the tilted rotating �TR� system. In TR
coordinates the evolution operator takes the form

S̃� = R̂yS̃R̂y
−1 = R̂yR̂zŜR̂y

−1, �31�

FIG. 2. Replacement of the real trajectory with the fictitious one
in the case of the ring of finite width. Both trajectories give rise to
the same evolution operator Ss in the absence of the magnetic field.
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R̂y = exp�i�̂y�0/2� .

The angle �0 between OZ˜ and OZ�˜ is defined by the relations

cos �0 = 1/�, sin �0 = 2�/� . �32�

The evolution of S̃� is determined by

dS̃�

dt
= i

�̂�

2
S̃�, �33�

� 	 �4�

�
�,0,− �0 −

2�

�
� . �34�

The physical meaning of the TR system is rather transparent.
At vanishing ring width and zero magnetic field this is the
coordinate system where the effective magnetic field pro-

duced by the Rashba SOI is parallel to the OZ�˜ axis.

B. Evolution of spin state along a trajectory in terms of
polarization vector

Transition from Ŝ in Eq. �11� to S̃� yields

Kij =
1

2
Tr��̃i��� j�t��˜ �� , �35�

where

�̃i� = R̂yR̂z�̂iR̂z
+R̂y

+, �36�

�� j�t��˜ � = S̃��̂ j�S̃�+ = R̂yR̂z�̂ j�t�R̂z
+R̂y

+, �37�

�̂ j� = R̂y�̂ jR̂y
−1 = �̃ j��t=0,

�̂ j�t� = Ŝ�̂ jŜ
+.

It is easy to see that �̃i� in Eq. �36� is an image of �̂i after

transformation to the TR coordinates. Analogously, �� j�t��˜ �
is an image of �̂ j�t� after the same transformation. Note that

both �̃i� and �� j�t��˜ � depend on time: �̃i�—due to rotation of

the TR system of coordinates, �� j�t��˜ �—due to rotation of the
electron spin �described by the evolution operator� and rota-
tion of the TR system of coordinates. Further, both �̃i� and

�� j�t��˜ � can be decomposed into the sums over �̂p,

�̃i� = �
p=1

3

�pi
0 �̂p, �38�

�� j�t��˜ � = �
p=1

3

�pj�̂p. �39�

The superscript “0” at �pi in Eq. �38� indicates that �pi trans-
forms into �pi

0 with �SO→0. The unit matrix �̂0 is not

present in these sums because the traces of �̃i� and �� j�t��˜ �
are zero, as can be seen from Eqs. �36� and �37�. Using Eq.
�B2� from Appendix B one can check that �pj are TR coor-

dinates of the electron spin, provided that the initial spin was
e j. Analogously, �pi

0 are coordinates of ei in the TR system.
After substitution into Eq. �35� the sums in Eqs. �38� and
�39� lead to Kij written in the form of scalar product,

Kij = �i
0 · � j , �40�

�i
0 	 ��1i

0 ,�2i
0 ,�3i

0 � ,

� j 	 ��1j,�2j,�3j� .

The components of �i
0 in Eq. �40� being the coordinates of ei

in the TR system are defined only by its orientation with
respect to the original system that is by the angles � and �0.
The angle � at the end of the trajectory is �=�+2�n, where
n= 
1, 
2, . . . is the winding number. The angle �0 is also
fixed, see Eq. �32�. Hence, components of �i

0 at the end of a
trajectory are constants defined explicitly by Eq. �36�

�x
0 = �−

1

�
,0,−

2�

�
� , �41a�

�y
0 = �0,− 1,0� , �41b�

�z
0 = �−

2�

�
,0,

1

�
� . �41c�

With constant �i
0 averaging of Kij over trajectories reduces

to averaging of � j. We shall perform this averaging with the
use of the distribution function P of � j. This function will be
obtained from the Fokker-Planck equation which will be de-
rived and solved below.

The equation of motion for �� j�t��˜ � is found from Eqs.
�33� and �37�. In view of the expansion in Eq. �39� it can be
written as an equation of motion for � j

d� j

dt
= �� j � �� . �42�

This equation should be supplemented with the initial condi-
tions

�x�t=0 = �1/�,0,2�/�� , �43a�

�y�t=0 = �0,1,0� , �43b�

�z�t=0 = �− 2�/�,0,1/�� , �43c�

which can be derived from Eqs. �37� and �39�.

C. Stochastic differential equations for the angles
determining the position of an electron

and direction of its spin polarization

It follows from Eq. �39� that � j
2=Tr��� j�t��˜ �2� /2=1. This

allows to describe � j by only two variables, the polar angle
� and azimuthal angle �. Equation �42� is then reduced to

�̇ =
4�

�
� sin � ,
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�̇ = �0�t� +
2

�
��1 + 2� cos � cot �� .

It is convenient to represent the angle � in the form �=�
+�, where

� 	 − �� . �44�

For these new variables we obtain the system of equations

�̇ = 2���H

�
+ �W�t��sin�� + �� ,

�̇ = ��H

�
+ �W�t���1 + 2� cos�� + ��cot �� ,

�̇ = �0�t� , �45�

where we have introduced the frequency �W associated with
the finite width of the ring,

�W�t� = 	�t��0�t�, 	�t� = �2�

�
�2h�t�

a
. �46�

At the weak enough magnetic field �H��0. If, in addition,
the ring is narrow, h�t��a, then 	�t��1 and �W��0, as
follows from Eq. �46�. Returning to Eq. �45� we thus see that
� and � are “slow” variables while � is a “fast” variable.
Such a separation of variables simplifies considerably the
Fokker-Planck equation, which will be derived below from
the system of stochastic differential Eqs. �45�.

D. Derivation of the Fokker-Planck equation

Parameters of the Fokker-Planck equation for the distri-
bution function P�� ,� ,�� are determined by the drift A�,
A�, and A� and diffusion Bij ; i , j= �� ,� ,�� coefficients.25

Let us first consider the diffusion coefficient B�� given by

B�� = lim
�t→0

����2

�t
, �47�

where �� is the increment of the stochastic process ��t�. It
follows from Eq. �44� that ����2=�2����2. On the other
hand, it was shown in Ref. 15 that the winding number w of
the classically chaotic trajectories has a Gaussian distribution

P�w�T� = �2�T/T1�−1/2exp� − w2

2T/T1
� , �48�

where the constant T1 is the characteristic time of one turn,
�w2�T1��=1. This equation means that the winding of trajec-
tories is a diffusion process. One can extend Eq. �48� to a
range of w=� /2��1 assuming that a particle advances dif-
fusively along a ring arm. Such situation takes place if the
rotation direction �̇ / ��̇� changes many times while passing
the angular distance ���2�. Moreover, the angular dis-
tance between two consecutive changes in a rotation direc-
tion must be small enough to ensure a small change in � and
�. Hence, as follows from Eq. �44� this distance must be
��−1. We assume that scattering from ring boundaries and

spatially fluctuating potential make this condition satisfied.
From Eqs. �47� and �48� with w=� /2� we immediately

find

B�� 	 lim
�t→0

����2

�t
=

�2���2

T1
, �49�

where the overline denotes averaging over trajectories. Other
diffusion coefficients, as well as drift coefficients, are conve-
niently expressed in terms of the diffusion coefficient of the
auxiliary stochastic processes u�t�, which is defined by its
stochastic differential

du = �W�t�dt . �50�

An assumption that the deviation h�t� of a trajectory from the
middle line of the ring and the angle � fluctuate indepen-
dently leads to the absence of correlations between the sto-
chastic processes ��t� and u�t�. Assuming also a uniform
distribution of h over the width d of the ring arms, we find
from Eq. �46�

Bu� = B�u 	 lim
�t→0

���u

�t
= 0, �51�

Buu 	 lim
�t→0

��u�2

�t
= �2�

�
�4 d2

12a2B��. �52�

Further, Eq. �45� can be used to express the small incre-
ments ��, ��, and �� in the form of integrals over time
interval �t. Then, after averaging procedure the limits �t
→0 must be taken. For example, A�=lim�t→0 �� /�t, B��

=lim�t→0 ���� /�t. We thus obtain

A� = �H
2�

�
sin�� + �� +

Buu

2
2� cos�� + ��F ,

A� = 0,

A� =
�H

�
F −

Buu

2
2� sin�� + ��

��cot � + 2�
cos2 � + 1

sin2 �
cos�� + ��� , �53�

B�� = sin2�� + ���2��2Buu,

B�� = F2Buu,

B�� = 2� sin�� + ��FBuu,

B�� = B�� = 0, �54�

where

F = 1 + 2� cos�� + ��cot � .

These coefficients should be inserted in the Fokker-Planck
equation
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�

�t
�P sin �� = − �

i

�

�xi
�Axi

P sin ��

+
1

2�
i,j

�2

�xi � xj
�Bxixj

P sin �� ,

where the variables xi�i=1,2 ,3� denote �, �, and �. The
probability density P is normalized in such a way that an
integral of P sin � over �, �, and � is 1. In this way we
arrive at the following equation:

sin �
�P
�t

=
Buu

2
�2��2 1

sin �

1 + cos�2�� + ���
2

P − �H
2�

�

�sin�� + ��� �P
��

sin � + P cos �� + ¯

+
B��

2
sin �

�2P
��2 , �55�

where the dots stand for other terms that are proportional to
Buu or �H. All the terms in rhs, except for the last one, do not
contain derivatives over �. For a narrow enough ring and
weak magnetic field, Buu and �H�B��. So, diffusion in the
space of the slow variables � and � is indeed slower than
diffusion through the fast variable �. Hence, the diffusion
equation can be averaged over the fast variable. After aver-
aging Eq. �55� over � we arrive at the Fokker-Planck equa-
tion of the form

�P
�t

= −
�H

�

�P
��

+ Buu�2 1

sin �

�

��
�sin �

�P
��

�
+ Buu�1

2
+ �2 cot2 �� �2P

��2 +
B��

2

�2P
��2 . �56�

This equation should be solved together with the initial con-
ditions for each of the vectors � j.

P��,�,��t = 0� = ��cos � − cos �0
j ���� − �0

j ����� ,

�57�

where the angles �0
j and �0

j defining the initial positions of
the vectors � j are found from Eq. �43�. Using Eq. �32� �0
and �0 can be expressed in terms of �0. The initial value of �
should be zero since it is proportional to the initial value of
�, which is zero.

E. Solution of the Focker-Plank equation

After Laplace transformation with respect to time and
Fourier transformation with respect to � and � the Eq. �56� is
reduced to the ordinary differential equation

�v − � 1

sin �

�

��
�sin �

�

��
� −

�2

sin2 �
�v

= ��cos � − cos �0
j � , �58�

where

v = �2Buuei��0
j
P̃ ,

P̃ 	 P̃��,�,q�p�

=� d�d�e−i���+q���
0

+�

dte−ptP��,�,��t� ,

� =

p + i�
�H

�
+ �2Buu�1

2
− �2� + q2B��

2

�2Buu
.

The solution of Eq. �58� can be expressed in terms of eigen-
functions of the linear operator in lhs of this equation. In our
case they are the associated Legendre functions Pn

����cos ��
and we obtain

P��,�,��t� =
e−�2/�2B��t�


2�B��t
�

�=−�

+�
ei���−�0

j −�Ht/��

2�

� �
n=���

+�
2n + 1

2

�n − ����!
�n + ����!

Pn
����cos ��Pn

����cos �0
j �

� e−Buu����2�1/2−�2�+�2n�n+1��t. �59�

In this equation only a factor in front of the first sum
depends on �. It is clear that this factor determines a prob-
ability distribution of �. At the end of trajectories �at the exit
from the ring�, when �=2�w, w= 
1 /2, 
3 /2, . . ., it coin-
cides with the winding number distribution Eq. �48�. The
remaining part of Eq. �59� is evidently the conditional �for
given �� probability distribution of � and �. This function
can be used for averaging of the polarization vectors � j over
trajectories with a given winding number w.

F. Averaging of the polarization vectors �j

Since the unit vectors � j in Eq. �42� are defined by their
respective polar and azimuthal angles � and �, one can
calculate easily their average values using Eq. �59� and tak-
ing into account that �=�+�. We thus arrive at the follow-
ing expressions for the averages �� j� ��,T at fixed trajectory
duration T and a given � �winding number�,

��xj���,T = sin �0
j cos�� +

�H

�
T + �0

j�e−T/ �, �60a�

��yj���,T = sin �0
j sin�� +

�H

�
T + �0

j�e−T/ �, �60b�

��zj���,T = cos �0
j e−T/ � . �60c�

The parameters  � and  � have been introduced to character-
ize relaxation rates of the electron polarization due to the
finite width of the ring,

1

 �

	
1 + �2

4
Buu, �61�
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1

 �

	 2�2Buu.

As follows from Eq. �60�, perpendicular to the OZ�˜ -axis
components of � j decay with the rate 1 / � while the decay
rate of parallel components is 1 / �. We recall that in the

rotating system the direction of the OZ�˜ axis is determined
by the vector �, see Eq. �28�. At t=0 the rotating system
coincides with the original one. Hence, the electron polariza-
tion in the ring relaxes with the rate  �� ��, if the polarization
of the left reservoir is perpendicular �parallel� to �. Besides
relaxation associated with finiteness of the ring width, there
is an additional relaxation channel due to the magnetic field,
that will be discussed below.

To complete calculation of the spin conductance given by
Eqs. �14� and �40�, the scalar products �i

0 · �� j� ��,T, where
�i

0 are given by Eq. �41�, must be averaged over � and T.
Averaging over � is performed with the use of Eq. �48�, by
substituting w=−� /2��. As for the distribution over T, in
the case of classically chaotic systems one should use the
exponential function16 P�T�= −1 exp�−�T−T0� / �, where  
is the mean escape time of a particle and T0 is the shortest
trajectory duration. The results of calculation for gyy as well
as for polarization rotation angles in a magnetic field are
shown in Figs. 3 and 6, respectively. It is seen from these
plots that the AC oscillations magnitude and spin-rotation
angle strongly depend on the parameter T1 / +T1 / �, which
controls the trajectory winding number during the particle
spin lifetime. If this parameter is small, w is large and AC

oscillations are strong. In this regime one can write simple
analytic expressions for tensor components of the spin con-
ductance

�gxx� = − g0
1

�2 �Q + 4�2M� , �62a�

�gyy� = − g0Q , �62b�

�gzz� = g0
1

�2 �4�2Q + M� , �62c�

�gxy� = − �gyx� = g0
1

�
R , �62d�

�gxz� = − �gzx� = g0
2�

�2 �Q − M� , �62e�

�gyz� = �gzy� = g0
2�

�
R , �62f�

where Q, R, and M are given by

Q = cos ��

1 +
 

 �

+
2 

T1
sin2 ��

�1 +
 

 �

+
2 

T1
sin2 ���2

+ ��H 

�
�2 , �63a�

R = cos ��
�H /�

�1 +
 

 �

+
2 

T1
sin2 ���2

+ ��H 

�
�2 , �63b�

M =
1

1 +
 

 �

. �63c�

Note that expressions in Eq. �62� were obtained under an
assumption that the magnetic field is not too strong so that
�HT1 /��
6T1�1 / +1 / �� while T1 /2T0�1.

V. RESULTS AND DISCUSSION

We start our discussion from the analysis of the finite-
width effects. For simplicity, we will consider the �gyy� com-
ponent of the spin-conductance matrix in the regime of large
winding numbers when analytic expressions in Eq. �62� are
valid. In the absence of the magnetic field the spin conduc-
tance is given by

�gyy� = − g0 cos ��

1

 

2

T1
sin2 �� +

1

 
+

1

 �

. �64�

The denominator in Eq. �64� gives rise to a set of peaks
with maxima at �=�m	m, where m is integer. It is easily

FIG. 3. Attenuation of spin-current oscillations due to finite
widths of the ring and leads, at a zero magnetic field. gyy is the y
component of the spin conductance along the y axis, see Eq. �3�
in the text. g0 is the transmitted flux of electrons per unit energy
interval, per one spin projection of the incident electrons. The
variable � is expressed in terms of the spin-orbit length LSO as
�=
1+4�a /LSO�2. Three curves correspond to parameter sets �a�
a=1	, d=150 nm, W=150 nm, and q=1 /2. �b� a=1.5 	,
d=300 nm, W=100 nm, and q=1 /5. �c� a=1.5 	, d=300 nm,
W=30 nm, and q=1 /5.
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seen that for T1
−1� −1+ �

−1 the peak’s broadening �g�1.
Due to this inequality Eq. �64� can be written in the vicinity
of peaks in a more simple form

�gyy� = �− 1�m+1g0

T1

2�2

1

 

����2 +
T1

2�2�1

 
+

1

 �

� , �65�

where ��=�−�m. From Eq. �65� �g is expressed as

�g =
2T1

�2 �1

 
+

1

 �

� . �66�

Note that as follows from Eq. �C6�,  � depends on �. Hence,
�g depends on the resonance �m position.

In the case of a long particle lifetime  � � one obtains
from Eq. �C6�

�g = �m
2 d

a

8�1 + �m

2 �
3�m

2 . �67�

For example, the broadening of the third peak ��m=3, �m
=
2� is �g�3.4d /a. It is a quite noticeable value for a typi-
cal ratio d /a�0.1

So, the first obvious effect of the finite width is the broad-
ening of the spin-current oscillation peaks. The physical ori-
gin of this effect is the increased relaxation rate of the spin
polarization. This relaxation is caused by incoherent super-
position of polarizations coming from the trajectories encir-
cling slightly different areas in a ring of finite width. The
situation is elucidated in Fig. 4. This picture shows that the
finite width results in adding random loops breaking the co-
herency of the trajectories.

In addition to the broadening, the increased relaxation rate
leads, evidently, to a reduction in the peak intensity. This is
explicitly given by

��gyy��=�m
� =

g0

1 +
 

 �

�68�

which is the spin-current magnitude exactly at maxima
�minima�. From Appendix C the ratio of times in the denomi-
nator of Eq. �68� can be expressed as

 

 �

�
1

6�q

�4�1 + �2�
�2

a

W
�d

a
�4

ln22a

d
. �69�

This expression shows that the finite-width effect is sup-
pressed fast with smaller d /a.

Now let us focus on magnetic field effects. The first effect
is that the components �gyz�, �gzy�, �gxy�, and �gyx� of the spin
conductance are no longer zero. One can verify from Eqs.
�8�, �11�, and �14� that they appear because the reflection
symmetry with respect to the XOZ plane is broken by the
magnetic field. The physical meaning of such nondiagonal
components can be explained in terms of the effective polar-
ization Pef f�e j� on the exit from the ring, see Eq. �16�. For
example, nonzero �gzy� and �gxy� are associated with a rota-
tion of Pef f�ey� with respect to the polarization ey of the left
reservoir. It is convenient to consider a projection of Pef f�ey�
onto YOZ plane. Then, the rotation angle �P of this projec-
tion can be calculated from Eqs. �62� and �63�. For the mth
peak this angle is given by

tan �P = −
2�

�m

�H

�m

1

 
+

1

 �

. �70�

The nonzero �gyz� and �gyx� components can be interpreted in
a similar way. We note that due to the linear dependence on
�H, the sign of �P changes together with the magnetic field.

Another effect of the magnetic field is a reduction in the
spin current. Let us consider a trajectory which contains a
narrow loop, see Fig. 5. If the magnetic field is ignored and
only the SOI effect is taken into account, after passing the
loop the polarization P does not change. That is because on
the upper and the lower parts of the loop P rotates in oppo-
site directions, according to opposite directions nt

U and nt
L of

the SOI fields, see Eq. �8�. A magnetic field, however, causes
rotations of P in the same directions. Hence, evolutions of P

FIG. 4. A schematic picture explaining the effect of finite width.
Since the element of the trajectory passed forward and backward
does not give a contribution to the evolution operator, one can re-
place the trajectory 2 by 2�. After that it is obvious that the differ-
ence between 1 and 2 is that the latter contains the loop ABCD
passed counterclockwise.

FIG. 5. Narrow loops of the trajectory which break the coher-
ence of the trajectories in the presence of the magnetic field.
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along trajectories with and without the loop becomes differ-
ent. This introduces an additional decoherence leading to the
spin-current reduction and broadening of its oscillation
peaks. Using Eqs. �62� and �63� one can derive the following
expression for the magnitude of the effective polarization
exactly at maxima �minima�:

Pef f�ey���=�m
= g0

−1
��gyy��=�m
�2 + ��gzy��=�m

�2 + ��gxy��=�m
�2

� �1 + ��H 

�m
�2�−1/2

, �71�

provided that the ring is narrow enough,  / ���H /�m.
Let us consider a dependence of the spin conductance on

� in the presence of the magnetic field. In the vicinity of the
mth peak, instead of Eq. �65� we have

�gyy� = g0�− 1�m+1

1

 
�1

 
+

1

 �

+
2�2

T1
����2�

�1

 
+

1

 �

+
2�2

T1
����2�2

+ ��H

�m
�2 .

�72�

As can be seen from this equation, the relaxation mechanism
associated with the magnetic field gives rise to an additional
broadening of spin-current peaks. Their width can be evalu-
ated from Eq. �72� as

�g =
2T1

�2 ��1

 
+

1

 �

�2

+ ��H

�m
�2�1/4

. �73�

The discussed above effects are determined by character-
istic times  , T1, and  �. These times have been evaluated in
Appendix C using a simple model of scattering from a
bumpy ring boundary. Figures 3 and 6 demonstrate the ef-
fects of the ring width and magnetic field on behavior of the
spin conductance as a function of �=
1+4�a /LSO�2. We took
kF�2.5�106 cm−1 and LSO varying in a wide range. In
InAs-based quantum wells SOI can be quite strong with LSO
being as small as �100 nm.26,27 For a=1	 this gives �
=20. Curve �a� in these figures corresponds to the escape
time much shorter than T1 and  �. The winding number is
not large and AC resonances are broad. There are no notice-
able effects associated with the finite ring width. Also, the
magnetic field effect is relatively weak. The width effects are
seen on the curve �b�, in Fig. 3. A reduction in the oscillation
amplitude seen in the figure is in a qualitative agreement
with Eq. �68�, although for considered parameters this equa-
tion cannot be fully applied because the winding number is
not large enough. The winding number is larger for the third
set of parameters, �c�. The finite-width effect becomes stron-
ger, leading to a faster decreasing of the oscillation ampli-
tude. Also stronger is the magnetic field effect on polariza-
tion rotation in the xy plane �see Fig. 6�. Strictly speaking,
our semiclassical theory cannot be applied to this case be-
cause the number of propagating channels in leads is not
large. We, nevertheless show this result in order to demon-
strate a trend: for reasonable ring sizes the regime of large

windings with sharp AC resonances can be achieved only at
small lead widths or by means of barriers between leads and
the ring, resulting in the long  .

We note that the magnetic field effect on polarization ro-
tation is rather noticeable even at relatively weak 100 G
magnetic fields, as can be seen in Fig. 6. For example, for
�=1.6 and parameters �c�, the rotation angle can be as large
as 24°.
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APPENDIX A: LANDAUER FORMULA
FOR THE SPIN CURRENT

Since the spin-current density is an additive one-particle
dynamical observable, its average value at the point R and
t=0 is given by

�Jlj�R,t = 0�� = Tr� f̂1�t = 0�Ĵ1
lj�R�� . �A1�

Here the one-particle distribution function f̂1 describes the
open system consisting of the leads and the ring. The one-
particle operator

Ĵ1
lj�R� =

v̂lP̂ j�R� + P̂ j�R�v̂l

2
�A2�

represents lth component of the current density with spins
polarized along jth coordinate axis. v̂l is lth component of

FIG. 6. Rotation of the effective polarization vector Pef f�ey� on
the exit from the ring in the presence of the magnetic field. �P is the
angle between the initial polarization ey of the electrons in the left
reservoir and projection of Pef f�ey� onto the YOZ plane. The mag-
netic field strength is 100 G. Curves �a�–�c� correspond to the same
parameter sets as in Fig. 3.
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the electron-velocity operator. Since we calculate the spin
current in the asymptotic region of the right lead, where the
magnetic field and SOI are zero, the operator v̂i may be
written simply as p̂i /m�, where p̂ is the electron momentum

operator. The polarization density P̂ j�R� is defined by

P̂ j�R� = !̂R�̂ j , �A3�

where !̂R is the density operator. In the coordinate represen-
tation the latter is given by

!̂R = ��r − R� . �A4�

It should be noted that Eq. �A1� represents a polarization
current density, rather then the spin-current density, which is
twice smaller. For convenience we will use, however, the
latter name.

For noninteracting electrons the evolution of the distribu-
tion function is described by the equation

i�
� f̂1

�t
= �H, f̂1� , �A5�

where H is the one-particle Hamiltonian for the system
“leads+ring.” A formal solution of Eq. �A5� may be written
in the form

f̂1�t� = Û�t,t0� f̂1�t0�Û+�t,t0� , �A6�

Û�t,t0� = e−iĤ�t−t0�/�. �A7�

Further, we take into account that the system under consid-
eration has an asymptotic region where an electron is effec-
tively decoupled from the ring. In this case the methods of
the scattering theory may be applied directly without adia-
batic switching off the scattering potential at t= 
�. First,

let us write down f̂1�0� in the form

f̂1�0� = lim
T→+�

Û�0,− T�Û0
+�0,− T�Û0�0,− T�

� f̂1�− T�Û0
+�0,− T�Û0�0,− T�Û+�0,− T� , �A8�

where the unperturbed evolution operator Û0 is obtained

from Eq. �A7� by replacing Ĥ with the “unperturbed” Hamil-

tonian Ĥ0. The latter is obtained by removing the ring and
elongating the leads to meet each other. In Eq. �A8� one
easily recognizes the familiar Möller operator "+ of the scat-
tering theory,28

"+ = lim
T→+�

Û�0,− T�Û0
+�0,− T� . �A9�

This operator maps the wave function ��in� describing a par-
ticle state at t=0 in the absence of the ring onto the actual
state ���t=0��

���t = 0�� = "+��in� . �A10�

From Eqs. �A8� and �A9� we obtain

f̂1�0� = "+ f̂1
in�"+�+, �A11�

where, by analogy with ��in�, the function

f̂1
in = lim

T→+�
Û0�0,− T� f̂1�− T�Û0

+�0,− T� �A12�

can be interpreted as a distribution function of the system at
t=0 in the absence of the ring. The trace in Eq. �A1� can now
be rewritten as

�Jlj�R,t = 0�� = �
i1,i2

�i1� f̂1
in�i2��i2��"+�+Ĵ1

lj�R�"+�i1� .

�A13�

Since the unperturbed problem does not involve SO interac-
tion, a convenient choice of the basis vectors �i� in Eq. �A13�
is

�i� = �b� � ��� , �A14�

where the eigenvector �b� corresponding to the unperturbed
Hamiltonian describes the electron orbital motion and ��� is
the eigenvector of �̂z corresponding to its eigenvalue �. Fur-
ther, the slab geometry of the unperturbed problem suggests
that �b� is taken in the form

�b� = �k� � �p� � �m� �A15�

with the eigenvectors �k�, �p�, and �m� describing a particle
motion along OX, OY, and OZ axes in the absence of the
ring. Hence, the corresponding wave functions are

wk�x� = �x�k� =
1

L

eikx, �A16�

vp�y� = �y�p� =
 2

Ly
sin�kyy� , �A17�

ky =
�

Ly
p, �p = 1,2, . . .� �A18�

and similarly for the wave function um�z�, m=1,2 , . . ., in z
direction. We took periodic boundary conditions in x direc-
tion, where L is the total length of the system. At the slab
interfaces the wave functions vp�y� and um�z� satisfy the
hard-wall boundary conditions.

Unit vectors parallel to polarizations of the left and right
reservoirs will be denoted as �L and �R, respectively.
Accordingly, we define the operators �̂
L,R 	�i�̂i
i

L,R with
eigenvectors �
L,R�� corresponding to polarization projec-
tions �= ↑ ,↓ onto �L and �R. Since particles with different
spins are distributed in reservoirs according to their respec-
tive Fermi distributions, the magnitudes of the reservoirs po-
larizations are determined by the differences �	L,R=	
L,R↑
−	
L,R↓ of chemical potentials of spin-up and spin-down
�relative to �L,R� electron-gas components. Therefore, assum-
ing that the unperturbed distributions of particles moving to
the right �k#0� and to the left �k�0� are given by the Fermi
distributions in the left and right reservoirs, respectively, we
can write
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f̂1
in = �

b,�
��k�nb,
L���b��b�� � ��
L���
L���

+ �
b,�

��− k�nb,
R���b��b�� � ��
R���
R��� , �A19�

where �� · � is the Heaviside step function and

nb,
L� = ��	
L� − E�, nb,
R� = ��	
R� − E� �A20�

are the Fermi distributions in the left and right reservoirs for
particles with the energy E. Note that Eq. �A19� was written
under the assumption that contacts between reservoirs and
leads are adiabatic �no scattering from the contacts�.

We assume for the average chemical potentials 	L=	R,
where 	L/R= �	
L/R↑+	
L/R↓� /2. So, the chemical potentials
of unpolarized reservoirs coincide. Denoting them 	U we
write the distribution function corresponding to the unpolar-
ized reservoirs in the form

f̂1
U = �

b

nb
U��b��b�� � �0, �A21�

where nb
U=��	U−E�. Evidently, f̂1

U does not give any con-
tribution to �Jlj�R , t=0��. Therefore, it is convenient to sub-

tract this function from f̂1
in

f̂1
in = f̂1

U + � f̂1
L + � f̂1

R, �A22�

� f̂1
L = �

b,�
��k��nb,
L���b��b�� � ��
L���
�L�� , �A23�

� f̂1
R = �

b,�
��− k��nb,
R���b��b�� � ��
R���
R��� ,

�A24�

�nb,
L,R� = nb,
L,R� − nb
U. �A25�

Denoting corresponding contributions of � f̂1
L and � f̂1

R to the
spin current as �Jlj�R , t=0��L and �Jlj�R , t=0��R, we arrive at

�Jlj�R,t = 0�� = �Jlj�R,t = 0��L + �Jlj�R,t = 0��R.

�A26�

The projectors �
L���
L�� and �
R���
R�� in Eqs. �A23� and
�A24� can be expressed in terms of the Pauli matrices �̂
L,R

and the unit matrix �̂0 using easily verified relations

�̂
 = ��
↑��
↑�� − ��
↓��
↓�� ,

�̂0 = ��
↑��
↑�� + ��
↓��
↓�� .

Straightforward calculations then give

�Jlj�R,t = 0��L,R = �
b,�1,�2

	U−�	L,R/2�E�	U+�	L,R/2

��
k�
�
L,R

�1�2

2

� �b�2��"+�+Ĵ1
lj�R�"+�b�1� , �A27�

where �b�1,2�	�b� � ��1,2� and upper �lower� sign in the ar-
gument of � function corresponds to the index “L” �“R”�.

The leads are assumed to be thin enough in z direction so
that only the levels �b�= �kpm� with m=1 are occupied and
contribute to the sum in Eq. �A27�. For simplicity, we denote

�kp� = �kp,m = 1� , �A28�

It is convenient to change in Eq. �A27� the summation over k
by integration over E. To do this, we introduce the vectors

�Ep��
� = 

p�E��kp� , �A29�


p�E� =
L

2��vp�E�
,

where 
 signs relate to k#0 and k�0. 
p�E� is the one-
dimensional density of states in the pth channel and vp�E�
=
2�E−Ep� /m� is the electron velocity in pth channel char-
acterized by the kinetic energy in y direction Ep. Using defi-
nitions in Eq. �A29� one can write

�
b

	U−�	L,R/2�E�	U+�	L,R/2

��
k��b� · �b�

= �
p
�

	U−�	L,R/2

	U+�	L,R/2

dE�
��Ep� · �Ep��
�. �A30�

Further, in the limit L→+� considering E as a continuous
variable one gets the normalization condition

�
��E�p���Ep��
� = �p�p��E� − E� . �A31�

Using this condition and substituting Eq. �A30� into Eq.
�A27� we find

�Jlj�R,t = 0��L,R = �
p,�1,�2

�
	U−�	L,R/2

	U+�	L,R/2

dE
�
L,R

�1�2

2

��
��Ep�2��"+�+Ĵ1
lj�R�"+�Ep�1��
�,

�A32�

��Ep�1,2��
�	�Ep��
� � ��1,2��. In its turn, the total spin cur-
rent through the cross section of the right lead is given by

�Jj�X,t = 0��L,R =� dYdZ�Jxj�R,t = 0��L,R.

Using Eq. �A32� we obtain

�Jj�X,t = 0��L,R = �
p,�1,�2

�
	U−�	L,R/2

	U+�	L,R/2

dE
�
L,R

�1�2

2
� dYdZ

��
��Ep�2,+ �Ĵ1
xj�R��Ep�1,+ ��
�,

�A33�

where

�Ep�s,+ ��
� = "+�Ep�s��
�, s = 1,2.

The vectors �Ep�s ,+��
� are known28 as the scattering states
associated with the “in” asymptotes �“incident waves”�
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�Ep�s��
�. Since the point R in the rhs of Eq. �A33� is lo-
cated in the asymptotic region of the right lead, only the
asymptotic behavior of the wave functions �Ep�2,+

�
� �R��
	�R� �Ep�2 ,+��
� and �Ep�1,+

�
� �R$� affects the calculation
of the matrix elements in Eq. �A33�. Thus, we may write
�Ep�2,+

�+� �R�� and �Ep�1,+
�+� �R�� as the sum of transmitted

waves while �Ep�2,+
�−� �R�� and �Ep�1,+

�−� �R�� as the sum of in-
cident and reflected waves,

�Ep�2,+
�+� �R�� = �

p���

tp�p
���2�E��Ep���

�+� �R�� , �A34a�

�Ep�2,+
�−� �R�� = �Ep�2

�−� �R�� + �
p���

rp�p
���2�E��Ep���

�+� �R�� ,

�A34b�

where tp�p
���2�E� and rp�p

���2�E� denote transmission and reflec-
tion amplitudes, respectively. According to Eqs. �A28� and
�A29�

�Ep���
�
� �R�� = %p�E

�
��X�up��Y�v1�Z������� , �A35�

where

%p�E
�
��X� = 

p��E�w
k�X� =

1


2��vp��E�
e
ikX,

�A36�

and ������= �� ����. k in Eq. �A36� is the positive solution of
the equation E−Ep�=�2k2 /2m�. Note that due to our choice
of the prefactor in Eq. �A29�, the functions %p�E�X� “carry”
the same flux �2���−1, independent of the channel number
p�. As a result, the transmission and reflection amplitudes
satisfy the flux conservation law

�
p���

��tp�p
���2�2 + �rp�p

���2�2� = 1.

Using Eqs. �A2�, �A34�, and �A35�, we transform Eq. �A33�
into

�Jj�X,t = 0��L =
�	L

2��
�
p,p�

1

2
Tr�t̂p�p

+ �	U��̂ jt̂p�p�	U��̂
L� ,

�A37a�

�Jj�X,t = 0��R =
�	R

2����
p,p�

1

2
Tr�r̂p�p

+ �	U��̂ jr̂p�p�	U��̂
R�

− Nm�	U�
1

2
Tr��̂
R�̂ j�� , �A37b�

where t̂p�p�	U� is the 2�2 matrix composed of the transmis-
sion amplitudes tp�p

↑↑ �	U�, tp�p
↑↓ �	U�, tp�p

↓↑ �	U�, and tp�p
↓↓ �	U�.

The matrix r̂p�p�	U� is composed in a similar way. Taking
into account that �̂
=��̂ ·
� = �̂i
i and denoting

gji
L =

1

2��
�
pp�

1

2
Tr�t̂p�p

+ �	U��̂ jt̂p�p�	U��̂i� , �A38a�

gji
R =

1

2����
pp�

1

2
Tr�r̂p�p

+ �	U��̂ jr̂p�p�	U��̂i� − Nm�	U��ij�
�A38b�

we rewrite Eq. �A37� in the form

�Jj�X,t = 0��L,R = �
i

gji
L,R
i

L,R�	L,R. �A39�

We shall call the 3�3 matrices gL and gR as spin conduc-
tances. They determine the response of the spin current to the
polarization of the left and right reservoirs, respectively. For
example, if the left reservoir is polarized along the sth axis,
�L=es �es is the sth coordinate ort� and the right reservoir
is unpolarized, then according to Eqs. �A26� and �A39�
�Jj�X , t=0��=gjs

L �	L and gjs
L proves to be the proportionality

coefficient between �	L and jth component of the spin cur-
rent.

It is convenient to express the quantities 
i
L�	L and 
i

R�	R
in Eq. �A39� in terms of 2D spin-polarization densities
�Pi�XY��L and �Pi�XY��R corresponding to chemical poten-
tials of the left and right reservoirs. At small �	L and �	R
�EF we have

�Pi�XY��L/R = NF
i
L/R�	L/R, �A40�

where NF=2�m� /h2 is the 2D electron state density. Substi-
tuting this expression into Eq. �A39� we rewrite the latter in
the form

�Jj�X,t = 0��L,R =
2��2

m� �
i

gji
L,R�Pi�XY��L,R. �A41�

Combining Eqs. �A26�, �A39�, and �A41� we obtain finally

�Jj�X,t = 0�� = �Jj�X,t = 0��L + �Jj�X,t = 0��R

= �
i

gji
L
i

L�	L + �
i

gji
R
i

R�	R

=
2��2

m� ��
i

gji
L�Pi�XY��L + �

i

gji
R�Pi�XY��R� .

�A42�

This expression gives the spin current in the right lead in
terms of the left and right reservoir polarizations.

Comparing our expression in Eq. �A38� for the spin con-
ductance with the Landauer formula we see that they are
different in the way that our spin conductance is written in
terms of both transmission and reflection coefficients. This
difference is of principal character since due to nonconser-
vation of spin current we cannot express the contribution
�Jj�X , t=0��R �containing the reflection coefficients� via the
spin current in the left lead transmitted from the right.
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APPENDIX B: EVOLUTION OF POLARIZATION
ALONG sth TRAJECTORY

If we define the polarization of an electron as

P = Tr�!̂�̂� , �B1�

then, according to Ref. 29 the density matrix describing its
spin state may be represented in the form

!̂ =
1

2
��̂0 + P · �̂� , �B2�

where �̂0 is the 2�2 unit matrix. After passing sth trajec-
tory, the spin-density matrix is transformed into

!̂� = Ŝs!̂Ŝs
+, �B3�

where Ŝs is the spin-evolution operator given by Eq. �8�.
Substituting Eq. �B2� into Eq. �B3� and then Eq. �B3� into
Eq. �B1� we obtain the polarization of the electron at the end
of the sth trajectory

P� =
1

2
Tr�Ŝs�P · �̂�Ŝs

+�̂� .

Writing down this vector equation in components we obtain

Pi� = Kij
s Pj ,

where Kij
s is given by Eq. �11�. Therefore, we see that Kij

s

gives ith component of the electron polarization at the end of
sth trajectory, provided that at its beginning the electron had
the unit polarization along the jth axis.

APPENDIX C: CHARACTERISTIC TIMES

In this appendix we derive expressions for the particle
lifetime  , the relaxation time associated with the finite width
of the ring  � and the characteristic time of one turn T1. The
widths of the ring �d� and leads �W� will be assumed to be
much less than the radius a.

Let us start with  . This time is determined by the shortest
of two times: the mean time of particle escape from the ring
and the dephasing time associated with inelastic electron-
electron and electron-phonon collisions. We will assume that
the temperature is low enough to neglect the latter effect and
will focus on the escape time. Any electron trajectory inside
the ring is a set of straight segments. The probability that a
current trajectory segment is the last one before escaping

from the ring is  h / , where  h is a time interval between two
consecutive collisions with ring boundaries. On the other
hand, the same probability may be written as 2W /4�a.
Thence,  � h�2�a /W�. In its turn,  h can be estimated as

 h �
d

vF
�� 1

cos �
��

s

, �C1�

where � is the angle between the particle velocity and the
radius vector. Equation �C1� is valid for � not too close to
� /2, namely, �� /2−��&
2d /a. The average in this equation
is calculated assuming the isotropic distribution of �. A loga-
rithmic divergence near �=� /2 is removed by the cutoff

2d /a. We thus obtain ��1 /cos ���s= �1 /��ln�2a /d� and

 = 2
d

vF

a

W
ln�2a/d� . �C2�

For evaluation of the winding time T1 we introduce a
probability q that a particle changes its direction of motion
along a ring arm after scattering from the ring boundary. In
the case of diffusion scattering q=1 /2. If q�1 /2, the specu-
lar reflection prevails. In such a situation the time  h

ef f

	 1/2
q  h plays a role of a mean free time for a particle that

propagates diffusively along a ring arm. The corresponding
diffusion coefficient D can be evaluated as ��xef f

2 �s / h
ef f,

where ��xef f
2 �s= �vF h

ef f�2�sin2 ��s is the mean quadratic dis-
tance along a ring arm that an electron passes during the time
 h

ef f. Calculating the average �sin2 ��s in the same way as
above we obtain

D =
dvF

4�q
ln�2a/d� . �C3�

The distance L passed by a diffusing particle during the time
T is L=
DT and, for the winding number we obtain, accord-
ingly

�w2�s = L2/�2�a�2 = DT/�2�a�2 = T/T1. �C4�

Finally, we get from this equation and Eq. �C3�

T1 � 16�3q�a

d
�2 d

vF ln�2a/d�
. �C5�

To find  � we use definition Eq. �61� together with Eqs.
�49� and �52�. A simple algebra gives

 � = T1
3

4�2

�2

�4�1 + �2�
�a

d
�2

. �C6�
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